
https://app.titra.io/try

1-Click Deployment on DigitalOcean
Environment Variables
Docker Guide
Sending E-mails
Update an existing titra instance (Docker)
Titra on Synology nas DSM
Zammad Interface
Wekan Integration
OpenID Connect (OIDC) Authentication
API documentation
MongoDB version compatibility

Deployment

https://app.titra.io/try

titra is available in the DigitalOcean Marketplace for easy 1-click deployment of droplets. Get
started below:

Create a droplet on DigitalOcean

1-Click Deployment on
DigitalOcean

https://marketplace.digitalocean.com/apps/titra
https://cloud.digitalocean.com/droplets/new?image=kromit-titra-18-04#choose-droplet-size

ROOT_URL: the URL under which titra is served. Could be http://localhost:3000 for a local instance
or https://app.titra.io for a setup with reverse proxy and DNS records.

MONGO_URL: the URL of the mongoDB backend (e.g. mongodb://localhost:27017/titra)

MONGO_OPLOG_URL: the URL pointing to the OPLOG of the mongoDB backend (e.g.
mongodb://localhost:27017/local)

MAIL_URL: The server reads from the MAIL_URL environment variable to determine how to send
mail. The MAIL_URL should reference an SMTP server and use the form:

or

The smtps:// form (the s is for “secure”) should be used if the mail server requires TLS/SSL

 (and does not use STARTTLS) and is most common on port 465. Connections which start
unencrypted prior to being upgraded to TLS/SSL (using STARTTLS) typically use port 587 (and
sometimes 25) and should use smtp://. For more information see the Nodemailer docs

Please use the new Globalsettings available for administrators through the Administration page.

METEOR_SETTINGS: the titra specific settings in JSON format, all settings have to belong to the
“public” hierarchy. The available parameters are:

disablePublic: true/false – if set to true, projects can not be set as public

Environment Variables

smtp://USERNAME:PASSWORD@HOST:PORT

smtps://USERNAME:PASSWORD@HOST:PORT

METEOR_SETTINGS are Deprecated starting with titra
version 0.18.0

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://nodemailer.com/smtp/

enableAnonymousLogins: true/false – if set to true, the /try path will be available allowing
anonymous accounts to be created on the fly.

Below is an example for a METEOR_SETTINGS environment variable value:

{
 "public": {
 "disablePublic": "true",
 "enableAnonymousLogins": "true"
 }
}

Deploying titra with Docker

You will need a MongoDB container to use titra. Here is an example to get started:

Once the database is ready, titra needs to be aware of that container, an easy way to achieve this
is using –link:

In addition to the manual steps above, you can also use docker-compose to deploy the whole
stack:

Congratulations! titra should now be up and running at http://localhost:3000

Docker Guide

docker run --name mongodb -p 27017:27017 mongo

Please note that this basic approach will store all database data in a transient
Docker volume – this is not a good approach to run MongoDB in production!
Checkout this guide for a more sophisticated approach on how to get started
with running MongoDB in Docker.

“

docker run --name titra -p 3000:3000 --link mongodb -e MONGO_URL=mongodb://mongodb/titra -e
ROOT_URL=http://localhost:3000 kromit/titra

curl -L https://github.com/faburem/titra/raw/master/docker-compose.yml | ROOT_URL=http://localhost:3000
docker-compose -f - up

Please note that our standard Docker compose file does not map a volume for
the database files and thus everything is stored in a transient Docker volume.“

Persisting MongoDB database files

https://docs.docker.com/compose/
https://dev.to/sonyarianto/how-to-spin-mongodb-server-with-docker-and-docker-compose-2lef

As mentioned above, the MongoDB container will fallback to using transient Docker volumes if not
specified otherwise. If you are planning to run titra in production you should therefore specify a
volume mapping for the container path /data/db. A ready-to-roll production yml file can also be
found in the titra GitHub repository which maps the container path to /root/mongodb. This setup is
used for the DigitalOcean one-click deployment app.

https://github.com/kromitgmbh/titra/blob/master/docker-compose-auto-update.yml

MAIL_URL: The server reads from the MAIL_URL environment variable to determine how to send
mail. The MAIL_URL should reference an SMTP server and use the form:

or

The smtps:// form (the s is for “secure”) should be used if the mail server requires TLS/SSL

 (and does not use STARTTLS) and is most common on port 465. Connections which start
unencrypted prior to being upgraded to TLS/SSL (using STARTTLS) typically use port 587 (and
sometimes 25) and should use smtp://. For more information see the Nodemailer docs

The MAIL_URL can be passed to Docker with the -e parameter:

It can also be added in a similar way with docker-compose:

Sending E-mails
Environment Variables

smtp://USERNAME:PASSWORD@HOST:PORT

smtps://USERNAME:PASSWORD@HOST:PORT

Docker Setup

docker run --name titra -p 3000:3000 --link mongodb -e MONGO_URL=mongodb://mongodb/titra -e
ROOT_URL=http://localhost:3000 -e MAIL_URL=smtp://USERNAME:PASSWORD@HOST:PORT kromit/titra

version: '3'
services:
 titra:
 image: kromit/titra
 container_name: titra_app
 depends_on:
 - mongodb
 environment:
 - ROOT_URL=${ROOT_URL}

https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://nodemailer.com/smtp/

 - MONGO_URL=mongodb://mongodb/titra?directConnection=true
 - PORT=3000
 - MAIL_URL=smtp://USERNAME:PASSWORD@HOST:PORT
 ports:
 - "3000:3000"
 restart: always
 mongodb:
 image: mongo:5.0
 container_name: titra_db
 restart: always
 environment:
 - MONGO_DB:titra
 volumes:
 - titra_db_volume:/data/db
volumes:
 titra_db_volume:

If you have used the quick start guide in the titra Github repository you can use the following steps
to update titra to the latest version:

1. curl -L https://github.com/faburem/titra/raw/master/docker-compose.yml | docker-compose -f - down

2. docker pull kromit/titra

3. curl -L https://github.com/faburem/titra/raw/master/docker-compose.yml |
ROOT_URL=http://localhost:3000 docker-compose -f - up

Update an existing titra
instance (Docker)

The commands above assume that you are executing them either as a user with root
permissions or docker is running in rootless mode. Depending on your setup you might have
to add 'sudo' before the docker-compose commands.

If you have used a local docker-compose.yml file to override some default settings you can
of course replace the curl command with your local file.

docker pull kromit/titra will pull the latest version, however you can also use any tag to
update to a specific version (e.g. docker pull kromit/titra:0.89.6)

If your system do support Docker (here the list) go and install it from the Synology package
center.

Once you have Docker installed open the package and go to the Registry menu to

search for the images we need to run Titra.

image

Search for titra and double click on the kromit/titra to download the Titra’s image.
Select from dropdown the latest version available (latest tag is not working for me so i choose
0.29.0 manually)

Next image needed is mongo for the mongodb
Go again in Registry and search for mongo to download 4.2 version

image

Once the images are downloaded go to Image section and there you’ll find them.

Now it’s time to create Containers from the images.

At first we create the db container

double click on the mongo image and select a name for the container (e.g. mongodb)

image

click Next and then uncheck “Run this container after the wizard is finished” before

clicking Apply

Now go to container section and EDIT the mongodb container to set up a Volume for data
persistency

image

click Add Folder and select a folder on your nas to store the db datas as mount path set /data/db

 and then apply.

Titra on Synology nas DSM

https://www.synology.com/it-it/dsm/packages/Docker
https://user-images.githubusercontent.com/34745293/93575601-26d51500-f99a-11ea-93cf-5f6d87d39b7c.png
https://github.com/kromitgmbh/titra/releases/latest
https://user-images.githubusercontent.com/34745293/93576547-4a4c8f80-f99b-11ea-8be2-00de2df528dc.png
https://user-images.githubusercontent.com/34745293/93577935-f347ba00-f99c-11ea-8bfa-469f86a2c9fe.png
https://user-images.githubusercontent.com/34745293/93578271-681af400-f99d-11ea-9946-a58ed75df126.png

Now start the container with the toggle you see right next to it and wait some time to have it up.

if you double click on container and go in LOG label you’ll see something like this

NETWORK [listener] Listening on 0.0.0.0

meaning mongodb is up and listening on all interfaces.

Go back to images section, now is time for creating Titra container and linking it to

mongodb

Double click on Titra image, choose a name for it and click the advanced button

image

Go to port settings and choose a local port that is free on your system, don’t touch

container port.

Now switch to Links label and click + Button to link Titra container to mongodb

container

image

Now switch to Environment tab and set 2 new variables for the container

image

They must be set accordingly to your container configuration

For example:

ROOT_URL = http://10.0.1.100:3000

and
MONGO_URL = mongodb://mongodb:27017/titra

as 10.0.1.100 is my local lan NAS ip

Now go Next and click apply to have the container running.
Docker could alert you that mongodb was started because its needed to Titra (it’s ok it’s our goal)

In container section you must see both container running

image

https://user-images.githubusercontent.com/34745293/93579211-82090680-f99e-11ea-8de8-7edf7a26730c.png
https://user-images.githubusercontent.com/34745293/93579553-e75cf780-f99e-11ea-9c86-a32e7a43d485.png
https://user-images.githubusercontent.com/34745293/93579759-2a1ecf80-f99f-11ea-8a6d-8b6a7d63092b.png
https://user-images.githubusercontent.com/34745293/93580840-99e18a00-f9a0-11ea-920a-af12098979bf.png

Let’s test if everythings gone right

open your broswer and point it to http://nasip:port choosen before Titra should be working ?

image

Tutorial by github.com/tomonetml

http://nasipport
https://user-images.githubusercontent.com/34745293/93580985-d1503680-f9a0-11ea-976a-1d8c3b661c7a.png
https://github.com/tomonetml

This might be specific to our setup, but after following the default installation instructions for the
Zammad community edition we had to add the following to the end of our nginx configuration
(/etc/nginx/sites-enabled/zammad.conf) to have a working CORS setup:

Login to your Zammad instance and go to Profile > Token Access. Create a new Personal Access
token for titra. Since we are only querying ticket information we only need the ticket.agent
permission to use the API:

Zammad Interface
Enable CORS

 location /api/ {
 add_header 'Access-Control-Allow-Origin' '*';
 add_header 'Access-Control-Allow-Headers' '*';
 proxy_hide_header 'Access-Control-Allow-Origin';
 proxy_hide_header 'Access-Control-Allow-Headers';
 proxy_pass http://zammad-railsserver;
 }

Create API access token

In titra navigate to Settings > Interfaces and enter the URL of the Zammad instance (don’t forget
the trailing “/”) and the previously generated Access Token.

Connect titra to Zammad

If the interface has been setup correctly you can now use your Zammad tickets as a task source for
time tracking! Try searching for some of your tickets and they will show up in the task auto-
complete suggestion.

Verify and Enjoy

1. A titra environment (preferable secured over HTTPS) e.g. app.titra.io
2. A Wekan environment (preferable secured over HTTPS). Attention, if the environments are

served from different hosts, make sure the Access-Control-Allow-Origin header is set to
allow access from the the titra environment.

For 2. this is in particular the CORS environment variables of Wekan, to enable CORS for all
domains you can use the following settings: CORS=*, CORS_ALLOW_HEADERS=Authorization. More
details can be found in the corresponding Wekan documentation.

1. Enable the Wekan integration in titra
Administration > Global Settings

2. Edit the project you want to link to a Wekan board
https://app.titra.io

3. Wekan: Click on "Export board" in the Wekan board menu
4. Wekan: In the submenu Right click on "Export board to JSON" to copy the Wekan board

URL

Wekan Integration
The built-in Wekan integration of titra enables you to plan your project tasks in
Wekan using the agile methodology and track time against these very tasks
when you and your time work on them. This is powerful combination which can
be used to efficiently execute projects of any size and duration.

“

Prerequites

How to enable and configure the Wekan integration in titra

https://app.titra.io/
https://github.com/wekan/wekan/blob/1617577378fc17ca09fd3ef34f24e02c2889aa9f/docker-compose.yml#L295-L301
https://wiki.titra.io/uploads/images/gallery/2022-01/image-1642153511833.png
https://app.titra.io

Export Wekan board

5. Paste the copied URL to the project Wekan integration field, click on "Check" to validate
the URL

6. If the provided URL is valid and can be reached from titra, the available lists will be
retrieved from Wekan. Select the list you want to use as source for time-tracking and click
on Save.

7. Verify the Wekan integration works by searching for a card in the track time view
Verify Wekan integration

https://wiki.titra.io/uploads/images/gallery/2022-01/image-1642155190279.png
https://wiki.titra.io/uploads/images/gallery/2022-01/image-1642155526858.png

1. Configure your OIDC client for Authorization Code Flow

2. Set the relevant fields in titra

Client ID: Client ID as per your OIDC App Configuration
Client Secret: As per your OIDC App Configuration
OIDC Server Url: Your auth domain e.g. http://auth.your.domain
Authorization Endpoint: /your/auth/endpoint Note the prepended slash

Token Endpoint: /your/token/endpoint Note the prepended slash

UserInfo Endpoint: /your/userinfo/endpoint Note the prepended slash

Id Token Fields: Extra fields to be grabbed from your token and appended to the user. In
my case my server returns an opaque access token which it grabs first (not the id token)
so make sure that these fields are on the relevant token.
Request Permissions: These permissions will be requested from your OIDC server, it
defaults to openid,profile,email.

You can disable the default login form to prevent password based logins entirely:

OpenID Connect (OIDC)
Authentication

Gitlab OpenID Provider

https://wiki.titra.io/uploads/images/gallery/2023-03/image.png

Example configuration provided by Github user Rishats in issue 171.
Screenshot from 2023-04-28 13-33-08

Screenshot from 2023-04-28 13-33-35

All credit goes to @iamscottcab who has authored this documentation and provided two pull
requests to improve the OIDC integration. Also a shoutout to @Rishats for providing the
Gitlab example configuration!

https://github.com/Rishats
https://github.com/kromitgmbh/titra/issues/171
https://user-images.githubusercontent.com/21194702/235084014-50366a5e-b396-4005-bfac-413bc5711c40.png
https://user-images.githubusercontent.com/21194702/235084108-a33775a6-f905-4f73-9ad5-44c510aa3b6b.png
https://github.com/iamscottcab
https://github.com/kromitgmbh/titra/issues/158
https://github.com/Rishats

To use the titra API you need to create an API token first. See user-settings for more information.
Once the setup is complete, the complete titra API documentation can be found at
https://kromitgmbh.github.io/titra/ .

API documentation

https://wiki.titra.io/books/using-titra/page/user-settings
https://kromitgmbh.github.io/titra/

titra is built on Meteor.js which is in turn using the official Node.js MongoDB driver. The official
statement regarding compatibility can be found here.

titra will always be updated to the latest Meteor.js version and thus inherits its dependencies.The
official MongoDB Node.js driver compatibility is available here.

MongoDB version
compatibility

https://guide.meteor.com/2.6-migration#:~:text=You%20can%20check%20here%20which,%2C%204.2%2C%204.0%2C%203.6.
https://www.mongodb.com/docs/drivers/node/current/compatibility/#:~:text=MongoDB%20ensures%20compatibility,Lifecycle%20Schedules.

